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Abstract

The recent trend in the intensification of dairynisng in Europe has sparked an interest in
studying the economic consequences of this pro¢essever, classifying empirically farms
as extensive or intensive is not a straightforntask. In recent papersatent Class Models
(LCM) have been used to avoid an ad-hoc split of tinepkainto intensive and extensive
dairy farms. A limitation of current specification$ LCM is that they do not allow farms to
switch between different productive systems ovaeti This feature of the model is at odds
with the process of intensification of the Europedairy industry in past decades. We
estimate a single LCM that allows for changes ofdpction system over time by estimating a
single LCM model but splitting the original panel into tworipels and find that the
probability of using the intensive technology irases over time. Our estimation proposal
opens up the possibility of studying the effectamténsification not only across farms but

also over time.
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1. Introduction

The number of dairy farms in the European Union fallen dramatically in recent decades
and continues to decline. Given that farm outpumtai@s roughly at quota level, over the
same period the average size of dairy herds hasased steadily. At the same time, genetic
and management improvements in dairy cattle havenitied large increases in milk
production per cow. These structural changes haweéded the basis for the propagation of

intensive systems of production in the dairy sector

Extensive dairy farming, on the other hand, coasi$tproducing milk using mainly on-farm

produced forage with low stocking rates. Fostepngduction using extensive systems has
often been an explicit goal of agricultural poligystified by factors such as environmental
soundness, improved animal welfare, or use of aminthnd in some areas. In contrast to
this, many dairy farms in Europe have gone in ggosite direction, adopting more intensive

production systems.

Despite the importance of the intensification psscand the intense policy debates it has
generated, few papers have studied the intensdicadf dairy farming using economic
analysis. Most articles have adopted a technicalpeetive, describing the physical changes
of the process (e.g., Simpson and Conrad, 1993)e wéry few have analyzed the economic
consequences of this process (some exceptions leaeeAet al, 2010, and Nehringt al,
2011).

From an empirical point of view, the coexistenceboth extensive and intensive farms
implies that there are two different technologiasthe sector. This runs contrary to the
assumption of a common technology for all farms alvhis the most frequent in the
production literature. However, there is also awass among researchers of the estimation
bias that arises if such an assumption is unrealisor this reason, several approaches have
been followed in dairy sector studies in order ¢oaant for the likely existence of different
technologies. The most basic one is to drop a nurobdarms from the sample on the
grounds that they may operate under a differerin@ogy (Tauer and Belbase, 1987). A
second approach is to split the sample into seyg@ips based on some observable farm
characteristics. For example, Hoch (1962) dividesl $ample into two groups based on the
location of farms, while Newman and Matthews (2006hsider two different technologies

depending on the number of outputs each farm pexiuc



Classifying farms as intensive or extensive is amistraightforward as it might appear. For
example, Nehring et al. (2011) used the numberosiscper hectare in order to split the
sample. However, the stocking rate partition doesfully describe the production system.
Other aspects such as the productivity of cowdershare of concentrates in the feed ration
could also be taken into account. In this papelawad an ex-ante classification of farms as
extensive or intensive by estimating a Latent CMsslel (LCM). This model assumes that
several unknown technologies (classes) have gemkerdte sample, and allows for the
estimation of the parameters of the different tedbgies plus the probability that each

observation has been generated by a specific témiyno

To the best of our knowledge, the starting poinprefvious models in the literature is a set-up
and estimation proposal that assumes that the Ipilitipaf each observation belonging to a
class (i.e. using an intensive or extensive teauylis constant over time. This implies that
changes during the period of analysis, no matter damatic, do not lead to a farm being
labeled as belonging to a different class (use diffarent technology). Such an assumption

becomes increasingly untenable as the number einodd periods gets larger.

The objective of the present paper is twofold. tFivge wish to determine whether the
intensification process that has been taking placeecent decades has come to an end or
whether dairy farms are still switching from exteesto more intensive production systems.
For this purpose, we make a simple methodologicgbgsal to circumvent the assumption of
class probability being constant over time. Secaval are interested in analyzing the effects
of intensification on farms’ efficiency. In partieu, for given inputs we would like to know
whether intensive farms have the potential to pcedmore output than extensive farms, and

if so, the degree to which intensive farms achmweh potential.

In order to fulfill these two objectives, in the pimical section of the paper, we use a panel of
dairy farms in Northern Spain to illustrate thedibdity of estimating aLCM with time
varying probabilities. Our objectives are first moeasure the changes over time in the

probability of belonging to a class (technology)dasecond to analyze the effects on



production potential and efficiency of dairy farnténsificatiori. Unlike previous studies, our
methodological proposal allows us to look specificat the farms that might have tilted

towards a more intensive production system in #répg of analysis.

The organization of the paper is the following.next section we describe the model. In
section 3, we present the data and the empiricdleinén section 4 we show the econometric
estimation of the latent class models. In sectidinebe is a discussion of the empirical results.

The paper ends with some conclusions.

2. TheMode
We use a.CM to analyze the extent of intensification in outasg&t. The initial step is to
check whether theCM identifies different technologies and if thosehiealogies represent
different degrees of intensification. The startipgnt is a log-linear stochastic production
frontier (Orea and Kumbhakar, 2004) such as:

Ithzlnf(Xt)l+\ﬁ jl_l'rljl 1)

wherex is a vector of inputsy a single outputy a symmetric random disturbance, and
one-sided random disturbance that measures tethn&fficiency. Subscript i(i=1,...,N)
denotes firmst (t=1,...,T)denotes time, and subscrjgi=1,...,J) indicates a technology in a
finite set. The vertical bar means that there idiféerent production function (different
parameters) for each clags We assume that, conditional on each class, theora

disturbances andu follow a normal and a truncated normal randontitiistion respectively.

In a latent class model we need to consider thiteddiHood functions. The first is the

likelihood function of a firm at timet belonging to clasg

LR, =9(% % ©)) @)

® The present paper is related with a strand ofdlitee linking technological choices with efficigncAs an
example, Kompas and Nhu Che (2006) studied thecteffedifferent technologies on the efficiency diny
farms by including in the inefficiency model a séwariables reflecting technological choices.



where@; represents the set of parameters of technologgs)gleandg denotes the likelihood
function of a production frontier (Kumbhakar andved, 2000). The second is the likelihood
function of a firmi conditional on clasg obtained as the product of the likelihood funesio

in each period.

LFij:leFijtzljg(M%Qj) (3)

Finally, the unconditional likelihood function afrh i is calculated averaging the likelihood
conditional on each class using the prior prob&édliof class membershify as weights:

J
LF =X LRR (4)
=1
Prior probabilities can be interpreted as the phodiies attached to membership of clgss
(Greene, 2005). These prior probabilities can bearpaterized using a multinomial logit

model such as:

_ exp(éj z)

R=g——— (5)
;exp(éj z.)

wherez is a vector of “separating variables” afida vector of parameters to be estimated.
The “separating variables” are related to the adopaf a technology and, as a result, can be

used as explanatory variables of the prior proiigtwf using that technology.

After estimation of the model in (1) by maximumdiihood a “posterior probability” can be
computed as:

—_ i (6)

As equation (6) shows, the prior probability ofssanembership for each farm is weighted by
the empirical likelihood that the farm belongs batt class. This implies that the ability of
each technology to explain the observed productérna farm is incorporated in the
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calculation of the posterior probability. In a senghe estimates obtained with the
parsimonious parametric model of the prior probgbdre complemented with information
on individual fit to provide a more accurate evélua of the probability of class membership.
In fact, the posterior probability is considered thest estimate of class membership (Greene,
2005), and as such, the value of this probabilgtythe criterion that we will use for

determining whether a farm is using a particulahtelogy.

As mentioned above, a subtle feature oflt# for panel data is that prior probabilities are
modeled as time invariant. In practical terms, timeariant probabilities amount to assuming
that changes in farms over time don't affect thecagtion of a farm to a class (intensive or
extensive technology). However, we expect somedamthange the use of inputs during the

period of analysis in ways that suggest tilting &osls intensive farming.

Our aim, therefore, is to circumvent the assumptbrtime-invariant probabilities in the
empirical analysis. For that purpose, we estimatmgleLCM model for the whole period of
analysis but split the observations for each famo itwo periods, where the first period
roughly corresponds té<1,...,T/2 and the second period t{/2+1,...,T). In this approach,

farm i is considered to be a different farm in each & tvo periods. As a result, the
probability of class membership is constant foriveeiy farm during each of the two periods

but can change from the first period to the second.

An alternative approach to obtain time-varying @iobties would be to estimate a pooled
model. This amounts to considering the dataset @ess section of farms instead of taking
into account the existence of a panel. In this caseach observation farimis treated as a
different farm, thereby allowing probabilities dass membership to vary freely over time.
The downside is that we disregard the informaticovigled by observing the same farm in
several periods and that the computed probabildfeslass membership are not necessarily
parsimonious. Indeed, it would be possible to obsaome farms moving repeatedly from
one class to the other. All in all, this approaeleras prone to numerical problems and to
difficulties for interpreting the results. In faat, the empirical application that we propose the

LCM with pooled data failed to converge.

At this point, we should note that Alvarez and d&brral (2010) report time-varying

probabilities of class membership in the convergioRanel LCM. They get that result
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through a slight modification of equation (6). Thege as weighting factor of prior
probabilities the likelihood function of each obssion in each yearLEj in equation 2)
instead of the likelihood function of each fartrF{ in equation 3). However, they report
time variation of a feature of the model, latertssl probability, assumed to be constant over
time for estimation purposes. Two things can happast, if the latent class probability is
indeed time-varying the model used for estimatemisspecified. Second, if the latent class
probability is constant over time the model is eotly specified but you are reporting time
variation akin to variations around a mean. Ouinmegion proposal avoids such problems by
allowing class probability to change from the fisibperiod to the second while being

constant in each subperiod.

3. Data and empirical model
The data used in the empirical analysis consistlmilanced panel 28 Spanish dairy farms
observed over th&2 year period fron1999to 201Q In general, the units considered are small

to medium-sized family farms.

The empirical specification of the production fuontis a translog. We have chosen a
flexible functional form in order to avoid imposingnecessary a priori restrictions on the
technologies to be estimated. The empirical copatérof equation (1) is the following

translog production frontier:

5 1 5 5 12
Iny, =4 | +>. B | In%, +§ZZﬁm IS Ip +D 4 I TR+ Y =yl (D)
k=1 nE 2

k=1 1

The dependent variablg)(is the production of milk (liters). We have calesied only one
output since these farms are highly specializedréntioan 90% of farm income comes from
dairy sales). Five inputs are includex) (humber of cows,xt) purchased feed (kilograms),
(x3) ‘farm expenses’ (includes expenditure on inpwsduto produce forage crops, namely
seeds, sprays, fertilizers, fuel, and machinery@®ation), k) ‘animal expenses’, such as
veterinary, medicines, milking and other expensas| &s) land. All monetary variables are
expressed in constant euros of 2004. Additiondllytime dummy variablesSI D=1 if t=m,
TD.=0 otherwise) were introduced to control for factors that affalt farms in the same way

each year but which vary over time, such as wedtherexcluded period is 1999).



Prior to estimation each input was divided by g®metric mean. In this way, the first order

coefficients of the Translog production functiofi!() can be interpreted as output elasticities

evaluated at the geometric mean of the inputs.

The prior probabilities of class membership aresaed to be a function of two “separating
variables”: the natural logarithm of the stockirgter (cows per hectare) and the natural

logarithm of concentrate feed per cow

4. Econometric estimation
In this section, we report the main results of #dséimation of two latent class models by

maximum likelihood:

a) Panel model, i.e. using panel data and time-inmériclass membership

probabilities.

b) Split-panel model, i.e., estimating a sindl€M model but allowing the

probabilities of class membership to differ ovendiby splitting the sample into two
periods where the probability of class membershipanstant within each period but
can change for the ‘same’ farm from the first pério the second. Precisely, the

estimation proceeds by treating each farm as ardift farm in the second period.

In both models two latent classes were fours mentioned above, we make the prior
probability of belonging to a latent class a fuantiof two variables: ‘cows per hectare of
land’ and ‘feed per cow’. Since these variables suea the degree of intensification of a
dairy operation, we have labeled as “intensive” thtent class which shows positive
estimates of the coefficients of both ‘separatingfiables in the prior probability equation.
The estimates of the prior probability function tbe intensive class for both models are

shown in Table 1.

4 Since prior probabilities are modeled as time-ifare for a given period of time, the explanatosyiables are

averaged over such period.

® We also tried to fit a model with three classesibdid not converge.



Table 1: Prior probability equation for the intensive class

Panel model Split-panel model
Constant -11.906* -13.112**
In(cows/land) 1.7919** .8632*
In(concentrate/cows) 1.3510* 1.5513*

* ** Significantly different from zero at 0.05 d.01 significance levels respectively
Standard errors reported in Tables Al and A2 inAlppendix

Next, the farms were classified &#ensiveusing the highest (greater than 0.5) estimated
posterior probabilities (equation 6) since thesw/iole the best estimates of class membership
for an individual (Greene, 2005). In Table 2 wewldescriptive statistics of the two groups

(intensive and extensive) for the two models edtcha

Table 2. Characteristics of the estimated production classes (sample means)

Panel model Split-panel model

Intensive Extensive I ntensive Extensive
Observations 804 732 798 738
Milk (1) 365442 280884 371525 274994
Cows 42.7 40.3 43.2 39.9
Land (ha) 18.0 19.8 18.3 19.6
Cows per hectare 2.45 2.16 24 2.1
Milk per cow (1) 8129 6745 8202 6677
Milk per hectare (I) 20329 14779 20428 14718
Feed per cow (Kg) 3533 3352 3579 3304

The descriptive statistics of each group roughigeagvith the labels we gave to the classes
based on the effects of intensification variablegree probability of being in each class.

As expected, intensive farms have larger valudsegfvariables such as milk per cow, milk
per hectare and feed per cow. Intensive farms lacelarger in terms of milk production but
are rather similar in terms of land. In our viehe texplanation for this result is that marginal
increases of land are unlikely to be an option famers due to the fact that most
abandonments take place in less favored areas (minans) while remaining farms are
mainly located in the coastal plain, so that thedlavailable after some farms shut down

cannot be used by the remaining farms. For thisomafarmers who wish to increase



production need to use more feed per cow and inescases buy more productive cows,

thereby becoming more intensive.

In Table 3 we report the output elasticities far thvo groups evaluated at the geometric mean
of the sample. The differences in the elasticiiesoss groups can be seen as evidence of
different technological characteristics. The cortwlset of estimated parameters of the
production functions are reported in TabfgdsandA2 in the Appendix.

Table 3. Output elasticities evaluated at the geometric mean of the sample

Panel model Split-panel model
Intensive Extensive I ntensive Extensive
Cows 7176 A4626** 7491** A4553**
Feed .2969** .3623** 2737 .3685**
Farm expenses .0405** .0718** .0508 ** .0767**
Animal expenses .0296** .0964** .0206 * .0789**
Land .0368** .0339** .0214 .0295*

* ** Significantly different from zero at 0.05 drf.01significance level, respectively

All elasticities, with one exception, are signifitly different from zero at conventional levels
of significance. Despite the different assumptidmshind the two models the output
elasticities evaluated at the sample geometric naearsimilar across models. However, it is
interesting to note that there are wide differenioesveen the parameters of the two latent
classes (within each model). For example, the digfasticity with respect to cows is almost
twice as large in the intensive group as it ishia extensive group. On the other hand, the
output elasticity of feed is always larger in tha@emsive group. These different elasticities
imply large differences in marginal productivity miputs across technologies (extensive or

intensive), especially for cows and feed.

5. Empirical extensions
In this section we use the results of the estimatibtheLCM to analyze a set of issues with
important policy implications. First, we are intsted in studying the evolution of the
intensification process over time. Second, we wananalyze the differences in technical

efficiency between intensive and extensive farms.
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5.1. Evolution of intensification over time
We want to check if the probability of adopting ih&ensive technology increases over time.
We should note that this analysis is only possibléhe split-panel model and not in the

conventional pandlCM.

For this purpose, we regress the posterior proitiabilof being in thentensive class against
individual dummies (fixed effects) and a binaryighle ;) that takes the value zero for the
first half of the period analyzed and one for teead half. This is an unconditional analysis
over time. It is clearly different from the condmial analysis of prior probabilities that could
be achieved by including a time trend in equatibh (n the conditional analysis, prior
probabilities could change over time, keeping inpgg and separating variables constant. In
the unconditional analysis performed here, the gvmst probability varies over time due to

changes in the use of key inputs such as feed, oolasnd.

The equation to be estimated is the following:

Pr,=a| +b] d +w | (8)
wherej denotes the latent class ands a random disturbance. For each class, we have a
estimated posterior probability for each individugkl,...,128 and for each period
(t=1,..,12. Expression (8) represents a general proposalmiifferent classes. In this case,
there would only bd-1 free equations since the dependent variable,dstpor probability,
adds up to one. As we are considering only twatatiasses (Intensive and Extensive) in our
setting, we have only one relevant equation. Weoskoto estimate the equation

corresponding to the posterior probability of theensiveClass.

Table 4. Analysis of the evolution over time of posterior probabilities

Coefficient (blintensive Standard Error t-statistic

.0363 .0099 3.28

Table 4 shows the estimated coefficient of the tiomeary variable If])) for the Posterior
probability of Intensive Classin the Split-panel model. This coefficient is po& and
significantly different from zero indicating thahe probability of being classified as an
intensive farm is larger in the second period. Wieerpret this result as evidence of

“intensification” of dairy production in our sampb&er the period analyzed.
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In our view, the average change over time of tr@bability of belonging to the intensive
class provides evidence of farms in the sampiediliowards an intensive production system.
Additionally, the change in class probability beanethe two periods allows for some
descriptive analysis of the subset of farms thatehswitched production system in the
conventional sense of crossing the threshold defihg a class probability of 0.5. In
particular, 13 extensive farms became intensiviménsecond period, while 8 farms switched
from intensive to extensive. In table 5 we showdharacteristics of the farms that change to

a different production system.

Table 5. Characteristics of the farmsthat switch production system over time

From extensive to intensive From intensive to extensive

Period 1 Period 2 Period 1 Period 2

Extensive Intensive I ntensive Extensive
Farms 13 13 8 8
Milk (1) 279777 383108 269831 301237
Cows 37.2 42.9 35.3 42.5
Land (ha) 16.5 16.6 14.8 17.7
Cows per hectare 21 2.4 2.4 2.4
Milk per cow (1) 7061 8381 7456 7004
Milk per hectare (I) 15796 21242 18246 17191
Feed per cow (Kg) 3483 3824 3307 3204

The farms that become intensive in the second gemaflect the typical transformation
pattern: increase in the stocking rate and feedccper, resulting in higher milk per cow and
per hectare. On the other hand, the farms thatkvitom the intensive to extensive class
keep the stocking rate unchanged but reduce theisnod feed per cow, lowering milk per

cow and per hectare.

5.2. Theeffect of intensification on dairy farm efficiency

In this section, we want to explore the effectraénsification on production efficiency. Two

guestions are addressed. First, are intensive fanmme efficient than extensive farms?
Second, which technology is more productive (dees one of the two frontiers lie above the

other one)?
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The level of technical efficiency can be calculatedthe ratio between current output and
potential output, as defined by the technologigaintier. An output-oriented index of

technical efficiency can be computed as:

TE, |=exd- 4 |) 9)(
Subscript in equation (9) indicates that the technical éficy index can be calculated with
respect to each of the Latent Class frontiers (@rekKumbhakar, 2004). In our case, we can

thus consider two different frontiers. Talleshows the average technical efficiency for the

two technologies.

Table 6. Average efficiency by model and L atent Class (intensive/extensive)

Panel Model Split-Panel Model
I ntensive Extensive I ntensive Extensive
Frontier Frontier Frontier Frontier
Full sample .92 .92 91 .93
Intensive farms 94 .96 .94 .96
Extensive farms .88 .89 .87 .89

We would like to point out two results. First, fitve full sample, the average level of technical
efficiency is quite similar both across models @awms. Split-Panel) and across latent
technologies (Intensive frontier vs. Extensive frer). However, if we consider the two

groups of farms separately, a very interesting ltasufound: intensive farms have higher
level of technical efficiency in all the four froets considered. Additionally, the average

technical efficiency is higher in the extensivertier than in the intensive one.

This last result seems to indicate that the latemttier of thelntensive Grouplominates the
other, that is, for any given set of inputs it igspible to produce more output with the
intensive technology. We try to shed some lighttus issue by calculating the difference in

frontier output between the frontiers using thesatinputs of the farms:
D, =In¥, ~In¥ (8)
whereIny; (Inyr) is the (log of) frontier output of farinat timet evaluated at the intensive

(extensive) technology. Tableshows the average value Df for the full sample as well as

for the two classes.
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Table 7: Average difference between intensive and extensive production frontiers

Panel model Split-panel model
Full sample .0962 .1080
Intensive farms .0883 .0988
Extensive farms .1049 .1180

As the differences between the frontiers are catedl using natural logd); can be
interpreted approximately as the percentage diife¥eof potential output between both
frontiers. For the panel model, the intensive fiemis, on averagd.6% above the extensive
frontier. For the split-panel model, the intensiventier is, on averagel0.8%6 above the

extensive frontier.

Additionally, two interesting issues can be studib@ evolution of technical efficiency over

time and the relationship of technical efficiencghathe probability of being in a latent class.

These two issues can be analyzed both in the ctiomahpanel model and the Split-panel

model proposed in the present paper. However, enSplit-Panel model the probability of

class membership can change over time. This featiggests the need for a joint analysis of
the effects of time and probability of class menshay.

Table 8. Relationship of technical efficiency with intensification

Panel model Split-panel model

OLS OLS OLSwith farm

dummies

Intensive | Extensive | Intensive | Extensive | Intensive | Extensive

frontier frontier frontier frontier frontier frontier

Probability | 0.0607** | 0.0658** | 0.0786** | 0.0752**| 0.0545**| 0.043%
of intensive

class

Time -0.0010** | 0.0009** | -0.0014*| 0.0007*| -0.0013*% O.@3B**

dummy

* ** Significantly different from zero at 0.05 drf.01significance level, respectively

In Table 8, we show the results of regressing #&well of technical efficiency against the

probability of being in the intensive class andmaet dummy that takes the value 1 for the
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second period. We show the results for both mo¢fR#sel and Split-panel) and for both
frontiers (Intensive and Extensive). In the Sphnpl model we perform two different
estimations: standatdLS andOLSwith farm dummy variables. The inclusion of indivial

effects is not possible in the conventional Paneldeh because the probability of class

membership is constant over time.

We find common patterns of results for both modeld estimators. The probability of being
in the intensive class increases the level of teahrfficiency with respect to both frontiers
for the two models and the two estimation methddse coefficient of the time dummy
indicates that the index of technical efficiencyiraated using the extensive frontier increases
over time while the index of technical efficiencgtimated using the intensive frontier
decreases over time. This result is probably dudifferent patterns across frontiers of the
yearly shifts of the production frontier measureg the coefficients of the time dummy
variables. The time dummy coefficients of the isiga frontier (Table A1 and A2 in the
appendix) show a clear upward trend at the beginafrthe period followed by a fall in the
last few years. The time upward shift of the prdoturcfrontier is compatible with decreasing
technical efficiency if the movements of the frentare due to productive improvements of a
subset of leading farms while other farms do notvenemmediately towards the shifted
frontier. On the other hand, the extensive frorfgatures smaller and erratic shifts over time.
In our view, it is not surprising to observe farmgproaching, on average, a production
frontier with no sudden upper shifts.

Additionally, the Split-panel model provides a dalresult: the probability of being in the
intensive class changes across farms and increasedime (on average). In other words,
there are two sources of variation. The coefficiehtthe probability using plaif©OLS is
estimated using both sources of variation. Howetres, coefficient of the probability using
OLSwith farm dummy variables is estimated using dhky changes over time of probability.
The results show that the estimates of the coefftadf probability are 0.0545 (intensive) and
0.0439 (extensive) when using only changes oveg,tivhile the same estimates increase to
0.0786 (intensive) and 0.0752 (extensive) whenguboith cross-section and time variation of
the posterior probability. In summary, it seemst ttiee bulk of the change of efficiency
caused by changes in the probability of being i@ ittensive class can be attributed to
changes over time of this probability.
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4. Conclusions
The assumption of time-invariant prior probabildy a latent class can be circumvented by
estimating a singld.CM but splitting the original panel into two or moperiods. This
proposal allows for the estimation of the technglof different production systems without
an assumption that becomes increasingly untenattlieeaperiod of years analyzed increases.
By doing so, we find in our empirical applicatiohat the probability of being in the
“intensive dairy” class increases over time. Tleisult can be interpreted as evidence of dairy

farming intensification over the sample period.

We find differences in technical efficiency if wplis the sample in terms of the production
system using the posterior probability of each natelass. More precisely, the average
technical efficiency is higher for farms that bejaio the intensive latent class. Additionally,
the intensive frontier dominates the extensivetfasnindicating that the intensive technology
is more productive that the extensive one. Thiglt&san be seen as an economic rationale for

the observed trend towards the intensificationaofydfarms.

What are the policy implications of these findings®en that the intensive technology is
more productive and that intensive farms are mdfieient, i.e. produce closer to their
frontier than extensive farms, it seems that teadrtowards intensification will continue in

the near future.

The new reform of the Common Agricultural Policy ynalso affect farmers’ technology
choices. On the one hand, the phasing out of mitka&s may result in higher production. In
this sense, intensive farms will find it easierbimost production since they do not depend
heavily on forage. On the other hand, the new tipayment scheme which will move

towards a uniform payment per hectare may loweirtbentives to adopt intensive systems.
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Appendix

Table A.1: Estimation of the Panel Model

Class1 Class2
Variable Coefficient Std. Error Coefficient Std. Error
Constant 12.5724 .0158 12.542 .0152
Cows (Inx) 7176 .0213 4626 .0241
Feed (Inx) .2969 .0137 .3623 .0152
Crop (Inx) .0405 .0067 0718 .0080
Animal (Inx,) .0296 .0091 .0964 .0110
Land (Inx) .0368 .0104 .0339 .0125
(Inxy)? .2030 .1445 -.0854 .1096
(Inxy)? .0257 .0486 -.1737 .0612
(Inxs)? .0575 .0152 .0523 .0149
(Inxy)? -.0731 .0247 .0069 .0320
(Inxg)® .2857 .0398 -.0624 .0542
InX;Inx, -.3277 .0641 .0663 .0732
INX;INxs -.0999 .0395 .0103 .0301
INX4INX, .3738 .0532 -.0394 .0561
InXyInXs -.2055 .0584 -.0263 .0657
INX,InXs .1055 .0238 -.0608 .0219
INX,Inx, -.0960 .0321 0827 .0369
INX,INXs .1288 .0405 -.0160 0413
INXgInX, -.0307 .0149 .0025 .0164
INXgInXs -.0426 .0196 .0196 .0231
INXgINXs -.0619 .0275 .0138 .0282
TDgo .0206 .0129 .0072 0172
TDo; .0366 .0131 -.0046 .0173
TDy» .0358 .0130 .0243 .0175
TDy3 .0313 .0131 -.0181 .0173
TDos .0519 0131 0038 0171
TDos .0707 0132 0359 0172
TDys .0952 .0132 .0366 .0173
TDy7 .0839 .0132 .0378 .0175
TDys .0529 .0134 -.0156 .0175
TDyo .0559 .0134 -.0275 .0177
TDyo .0661 .0139 .0032 .0172
Sigma .0909 .0078 1537 .0064
Lambda 1.0506 .3484 2.7329 .3866
Prior probability equation

Constant -11.906 5.2881

In(cows/land) 1.7919 6078

Ln(concentrate/cows) 1.3510 .6600
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Table A.2: Estimation of the Split-Panel Model

Class 1 Class 2
Variable Coefficient Std. Error Coefficient Std. Error
Constant 12.5754 .0135 12.536 .0146
Cows (Inx) 7491 .0203 .4553 .0211
Feed (Inx) 2737 .0148 .3685 .0149
Crop (Inx) .0508 .0068 .0767 .0078
Animal (Inx,) .0206 .0093 .0789 .0118
Land (Inx) .0214 .0115 .0295 .0136
(Inx)? .2943 .1448 -.0405 .1092
(Inx2)2 .0121 .0460 -.0964 .0645
(Inxs)? .0732 .0147 .0410 .0134
(Inxs)? -.0530 .0263 -.0447 .0331
(Inx5)2 .2786 .0400 .0407 .0609
INX;INX, -.3067 .0613 -.0549 .0693
InX;INxs -1158 .0375 -.0217 .0316
INX;INx, .2953 .0530 .0704 .0591
INX;INXs -.2457 .0563 .0135 .0596
INXoINxs .0825 .0226 -.0131 .0217
INX,Inx, -.0526 .0331 .0418 .0396
INX,INXs .1130 .0410 -.0562 .0452
INXzINX, -.0275 .0151 .0003 .0160
INXzINXs -.0263 .0199 -.0053 .0224
INXgINXs -.0350 .0274 .0306 .0289
TDoo .0201 .0126 -.0013 .0162
TDo; .0376 .0129 -.0108 0174
TDo2 .0351 .0133 .0238 .0188
TDy3 .0283 .0130 -.0151 .0166
TDos 0471 .0132 .0099 .0165
TDos .0660 .0128 .0408 .0167
TDos .0917 .0130 .0457 .0167
TDy7 .0790 .0129 .0463 .0172
TDos .0531 .0131 -.0143 0171
TDygo .0563 .0131 -.0292 0172
TDyo .0697 .0134 .0007 .0170
Sigma .0883 .0067 .1497 .0060
Lambda 1.1750 .3155 3.0344 4630
Prior probability equation

Constant -13.112 4.2444

In(cows/land) -8632 -3943

Ln(concentrate/cows) 1.5513 5247
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