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Abstract

We study voting mechanisms, which consist of two elements: a profile

of sets of votes (this profile describes the votes that voters are allowed to

cast) and a voting scheme (which explains how to aggregate those votes). To

investigate how these two elements interact, we impose some properties on

the sets of votes (i.e., regularity) and on the voting scheme (i.e., candidate

monotonicity, candidate anonymity, and weak neutrality). We characterize

the family of voting schemes that satisfy some of those properties and analyze

the role played by the structure of the sets of votes in these characterizations.
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03921 Málaga. Spain. E-mail:bernardo@uma.es Tel. (+34) 91 624 5784. Fax (+34) 91 624 9329

1



1 Introduction

Most of the decisions that a society has to make involve selecting a representative,

e.g., electing the prime minister or congressmen, the head of a department, the

person to hire for a particular task, or even whether a law has to be changed. In

general, the problem consists of a group of voters who have to choose one from a

set of potential candidates.

In essence, any voting situation is described by two key ingredients: the informa-

tion we collect from the voters and how we aggregate this information to choose a

winner. The way in which both elements are combined, as well as the properties

they satisfy, determine the particular features of the voting processes. Regarding

the first ingredient, each voter has a set of votes that describes the possible votes

she can cast. This set may have a di↵erent structure, depending on the situation

we need to accommodate. For example, voters are sometimes limited to vote for

only one candidate, but in others cases voters are allowed to support as many can-

didates as they wish; similarly, there are cases where voters can abstain and cases

where they are obliged to vote. Each voter casts a vote from her set of votes. A

voting configuration is a list of votes, one vote for each voter. The second ingredient

describes how to choose a candidate taking as input a voting configuration. We

call this ingredient a voting scheme. There are di↵erent types of voting schemes,

e.g., a dictatorial voting scheme where the dictator alone determines the winning

candidate, the voting scheme that selects the candidate who garners the most votes,

or we can choose a candidate only if the number of votes she obtains is above a

certain threshold. A voting mechanism is a pair: a profile of sets of votes (one for

each voter) and a voting scheme. In this paper, we study voting mechanisms and

analyze the interactions between the structure of the sets of votes and the properties

that the voting schemes may satisfy.

The appeal of voting mechanisms comes from the properties they satisfy, which

should be natural requirements for both the sets of votes and the voting schemes.

We focus on four properties of voting schemes. Candidate monotonicity states that

if a candidate is chosen and her support subsequently increases while the support

for her opponents decreases, then this candidate should remain chosen.1 Strong can-

didate monotonicity is a more demanding requirement: it says that if a candidate

is selected and her support increases, then the voting scheme must select either the

same candidate or some other candidate whose support has also increased. Candi-

date anonymity states that the election of the winner does not depend on who votes

for whom. Finally, weak neutrality requires that, whenever possible, candidates’

identities are not determinant. Regarding the set of votes, we say that it is regular

essentially when voters are not limited by the names of the candidates for whom

1A similar definition of candidate monotonicity appears in Barbera et al. (1991)
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they can cast votes.

To find the voting mechanisms for which the sets of votes and voting schemes that

may satisfy the above properties, we define the qualified voting schemes. They

constitute a family, each of whose elements is determined by a weights matrix that

has as many rows as candidates, and as many columns as voters plus one. The

entries of the matrix must satisfy two conditions. First, they must be distinct from

each other, and second, their rows must be increasing. To each weights matrix, we

associate a qualified voting scheme, which functions as follows: form all the pairs

candidate/number-of-voters-supporting-her. Each pair corresponds to an entry in

the matrix, and we choose the candidate whose corresponding entry is the largest.

It is quite obvious that di↵erent weights matrices lead to di↵erent qualified voting

schemes. Some of the best well-known voting rules in the literature are particular

cases of our qualified voting mechanisms. Hence, our family contains the approval

voting rule that was introduced in Brams and Fishburn (1978) (i.e., voters can vote

for all of the candidates they approve, and the winner is the candidate who receives

the most support),2 the plurality rule (i.e., voters are limited to supporting at most

one candidate, and the candidate obtaining the most votes is chosen), the weighted

approval voting rules defined by Massó and Vorsatz (2008) (i.e., which generalize the

approval voting rule by introducing asymmetries on the candidates), among others.

Usually, suitable combinations of properties characterize one or several voting

schemes. Our main result shows that when the sets of votes are regular, the qualified

voting schemes are the unique voting schemes that satisfy both candidate mono-

tonicity and candidate anonymity. We further prove that if we also impose weak

neutrality, then we end up with voting schemes that follow the spirit of the approval

and plurality voting rules. As we have already mentioned, the structure of the sets

of votes and the properties that characterize the voting schemes are closely related.

If we relax the regularity requirement, these results are not longer true. However,

the qualified voting schemes still emerge when we replace candidate monotonicity

with strong candidate monotonicity, even when the set of votes is not regular.

The structure of the paper is as follows. In Section 2, we introduce the basic setup

and illustrate some examples of voting mechanisms. In Section 3, we present the

properties of the voting schemes that we study in this paper. In Section 4, we define

the qualified voting schemes, and we show that they generalize some of the voting

rules that are found in the literature. In Section 5, we present our main results.

Finally, in Section 6, we conclude with some final remarks.

2See Brams and Fishburn (2007) and Laslier and Sanver (2010) for two surveys on approval
voting.
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2 Voting mechanisms.

Let N = {1, . . . , n} be the set of voters who must select a candidate, let K =

{1, . . . , k} (k > 2) be the set of candidates from whom voters must choose, and

let 2K be the set of all possible non-empty subsets of K. Elements of N are denoted

by i, j, . . ., and elements of K are denoted by x, y, . . .. Subsets of 2K are denoted by

S and S

0, and subsets of N are denoted by M and M

0.

For each voter i 2 N , let V
i

✓ 2K [ � be the set of ”admissible” votes for i.3 This

set specifies the votes that voter i can cast. We refer to element v
i

2 V

i

as i’s vote.

A voting configuration is an specification of votes, one vote for each voter in N ,

v

N

= (v
1

, . . . , v

n

) 2 V

1

⇥ · · ·⇥ V

n

= V

N .

Example 2.1. The sets of votes V
1

, . . . , V

n

may have di↵erent structures, depending

on the situation we need to accommodate.

• If V
i

= 2K [ � for all i 2 N , then each voter simply submits the names of the

candidates she approves (if there are any).

• A minor modification of the previous case is when V

i

= 2K for all i 2 N . In

this new case, the voters are obliged to vote for at least one candidate and

they cannot abstains. On the surface, this may appear to be an insignificant

change, but, as we show later, it is significant.

• In other situations, such as the election of a legislature, voters are limited to

voting for no more than one candidate, that is, V
i

= K [ � for all i 2 N .

• A compromise between the previous cases is when voters are limited in the

number of candidates they can support. For example, V
i

= {S ✓ K : #S  3}
for all i 2 N .

• Finally, the Papal Conclave to elect the pope is a particular situation where

each of the cardinals can vote for any member of the College of Cardinals

except himself. In this case, the sets of candidates and voters are the same;

thus, K = N and V

i

= N r {i} for all i 2 N .

For each candidate x 2 K and each voting configuration v

N

2 V

N , let M

x

(v
N

) =

{i 2 N : x 2 v

i

} be the support for candidate x, i.e., the set of voters who are

voting for x in voting configuration v

N

. We denote by m

x

(v
N

) the cardinality of

M

x

(v
N

), m
x

(v
N

) = #M

x

(v
N

).

Let ↵ 2 Z
+

, we define V

↵ = {S 2 2K [ � : #S = ↵}. Hence, V 0 contains the votes

in which voters are limited to supporting no candidate (V 0 = �), V 1 contains the

3To simplify the notation, we write A [ � instead of A [ {�}.
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votes in which voters are limited to supporting exactly one candidate (V 1 = K). We

say that a set of votes V is regular when (i) votes are not restricted by the identity

of the candidates (e.g., if V \ V

1 6= � then V

1 ✓ V ), and (ii) if the voters are

allowed to support ↵ candidates, then they are also allowed to support any number

of candidates smaller than ↵.

Regularity. If V ↵ \ V 6= � then V

� ✓ V for all �  ↵.

Among the sets of votes shown in Example 2.1, some are regular, but others are not.

For example, V = 2K [ � and V = K [ � are regular. In contrast, V = K is not

regular because it does not contains V 0 = �, and V

i

= K� {i} is not either because

it distinguishes candidate i from the others, i.e., V
i

\ V

1 6= V

1.

A voting scheme is a way to aggregate votes to choose a single candidate. A voting

scheme is a mapping g : V N �! K that for each v

N

2 V

N selects an element of K,

g(v
N

) 2 K.

Given a voting scheme g, let A
g

denote the range of g:

A

g

= {x 2 K : g(v
N

) = x for some v

N

2 V

N}.

As with the sets of votes, we present some examples of voting schemes.

Example 2.2. Let � be an ordering over the set of candidates K that serves as

a tie-breaking rule (we need a tie-breaking rule because we can choose only one

candidate). Given S ✓ K, let us denote by S(�) 2 S the candidate that � ranks

first among those within S.

• Dictatorship of voter i 2 N , gdici : voter i has the power to impose the can-

didate for whom she is voting (obviously, � is needed to break the ties when

#v

i

� 2). More specifically, gdici(v
N

) = v

i

(�).

• Majority voting scheme, gmaj: the candidate who obtains the most votes wins

the election. That is, gmaj(v
N

) = M(�), where M = argmax
x2K m

x

(v
N

).

• Anti-majority voting scheme, g

anti-maj: the candidate who obtains the

fewest votes wins the election, i.e., g

anti-maj(v
N

) = M(�), where M =

argmin
x2K m

x

(v
N

).

• Incumbency of candidate x 2 K, gincx : a candidate can potentially be chosen

only if she receives more than n

2

votes. If necessary, we apply the tie-breaking

rule �. If no candidate reaches that threshold of support, then x is elected.

In other words, x can be seen as a status quo, but that may change if there

is enough support for an alternative. More specifically, if we define M

0(v
N

) =
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{y 2 K : m
y

(v
N

) > n

2

},

g

inc

x(v
N

) =

(
x if M 0(v

N

) = �

M

0(v
N

)(�) otherwise

A voting mechanism is a pair (V N

, g) where V

N = V

1

⇥ . . . ⇥ V

n

is a profile of

sets of votes and g is a voting scheme.

Table 1 shows that di↵erent combinations of these two ingredients lead to di↵erent

voting mechanisms. The rows contain the sets of votes, and the voting schemes are

in the columns. Therefore, each entry in the table is a voting mechanism. Thus, if

we stay in the same column, the advantages and disadvantages of a voting mecha-

nism are mostly due to the direct or indirect impact of a change in the set of votes.

Similarly, by keeping the row fixed, we can analyze the behavior of the voting mech-

anism when the corresponding voting scheme varies. If we combine V
i

= 2K [� and

V

i

= K [ � with the majority voting schemes, we obtain the standard approval and

plurality mechanisms, respectively. In both mechanisms, the winner is the candidate

who gets the most support (or one of those, in the event of tie), but this mechanisms

di↵er with respect to the votes that voters are allowed to cast. The Papal Conclave

used the majority voting scheme to elect a new pope for several centuries. In this

case, each cardinal could not vote for himself. The anti-approval and anti-plurality

voting mechanisms are the counterparts of the approval and plurality mechanisms,

respectively, because the winner is the candidate who receives the fewest votes. The

lifeboat game also uses the anti-majority voting scheme: a ship with ten people (e.g.,

a teacher, a plumber, an economist, a physician,...) is wrecked at sea, and the unique

lifeboat only has nine slots. Each passenger votes for the person, excluding him-

self, whom he thinks should survive. The passenger with the fewest votes stays on

the ship and dies. Constitutional reforms are also examples of voting mechanisms.

Let V

i

= {A,C} [ �, where � indicates abstention, A indicates a vote in favor of

amending the constitution, and C indicates a vote against amending the constitu-

tion. The voters are the congressmen. To pass the amendment, it is necessary to

obtain the support of an absolute majority of the congress, and if that threshold is

not reached, then the constitution remains unaltered. That is, C is the incumbent,

and the incumbent only changes if the alternative A has enough support.

3 Properties

Not every mechanism is equally appealing. The sets of votes should be natural,

simple and non-discriminatory, and the voting schemes should satisfy some desirable

and reasonable properties. With this goal in mind, we introduce some appealing

requirements that we impose on voting schemes.
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Voting schemes

Sets of votes gmaj ganti-maj gincx

Vi = 2K [ � 8i 2 N
Approval voting
mechanism

Anti-approval
voting mechanism

Vi = K [ � 8i 2 N
Plurality voting
mechanism

Anti-plurality
voting mechanism

Constitutional
reforms

Vi = K � {i} 8i 2 N

Election of the
pope from the 13th
to early 17th
centuries

Lifeboat game

Table 1: Di↵erent voting schemes.

Suppose that candidate x is elected in some voting configuration, but then some

voters change their votes such that the support for x increases while the support for

the rest of the candidates decreases. Then x must still be elected in the new voting

configuration. We refer to this property as candidate monotonicity.

Candidate monotonicity. For each v

N

, v

N

2 V

N such that M

x

(v
N

) ✓ M

x

(v
N

)

and M

y

(v
N

) ◆ M

y

(v
N

) for all y 2 A

g

� x, if g(v
N

) = x then g(v
N

) = x.

Strong candidate monotonicity is a more demanding version of the previous prin-

ciple. Assume that candidate x is elected in configuration v

N

, and now consider

another voting configuration v

N

in which x, and potentially other candidates, have

increased their support. Strong candidate monotonicity requires that, in the new

voting configuration v

N

, we choose either x or any other candidate whose support

has increased.

Strong candidate monotonicity. For each v

N

, v

N

2 V

N such that M

x

(v
N

) ✓
M

x

(v
N

), it must hold that g(v
N

) 2 S(v
N

, v

N

)[ g(v
N

), where S(v
N

, v

N

) = {y 2 A

g

:

M

y

(v
N

) ⇢ M

y

(v
N

)}.

Remark 3.1. Let us consider that N = {1, 2, 3}, K = {x, y, z}, and V

i

= 2K for

all i 2 N . Let v

N

= ({x, y}, {y}, {z}) and v

0
N

= ({x, y}, {y}, {x}) be two voting

configurations. Assume that g(v
N

) = x. When we pass from v

N

to v0
N

, the candidate

x increases her support, but no other candidate do it. If candidate monotonicity is

applied it must happen that g(v0
N

) = x. Consider the voting configuration v

00
N

=

({x, y}, {y}, {x, y}). When passing from v

N

to v

00
N

, we observe that whereas x and y

have obtain more support, z has received no vote. Candidate monotonicity does not

impose any restriction in this situation, and furthermore, g(v00
N

) 2 {x, y, z}, which
implies that even candidate z may win the election under v00

N

. However, if we require

g to satisfy strong candidate monotonicity instead of candidate monotonicity, then

it must happen that g(v00
N

) 2 {x, y}.
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The next property states that it is not relevant who votes for whom, so the election

depends only on the number of votes obtained by each candidate.

Candidate anonymity. For each v

N

, v

N

2 V

N such that m

x

(v
N

) = m

x

(v
N

) for

all x 2 K, it must hold that g(v
N

) = g(v
N

).

Our last requirement captures the principle of neutrality, which is commonly imposed

in the literature. It says that candidates should be treated equally and that we

cannot discriminate among them based on their names. Because we must always

select one candidate, this principle cannot be directly applied to our context. In

a simple situation in which all the candidates are voted by all of the voters, the

mere application of neutrality would not meet the requirement of selecting a single

candidate. Thus, we need to adapt this principle to our framework. Given x 2 K

and v

N

2 V

N , let us define D

x

(v
N

) = {y 2 K : M
x

(v
N

) 6= M

y

(v
N

)} as the set of

candidates whose supporters are distinct from the supporters of x. Weak neutrality

requires that changing the labels within D(v
N

) does not alter the voting scheme. In

other words, the voting scheme should be neutral when such a possibility exists.

Weak neutrality. For any v

N

, v

N

2 V

N , and y 2 D

g(v

N

)

(v
N

) such that M
y

(v
N

) =

M

g(v

N

)

(v
N

),M
g(v

N

)

(v
N

) = M

y

(v
N

) andM

x

(v
N

) = M

x

(v
N

) for all x 2 Kr{y, g(v
N

)},
it must hold that g(v

N

) = y.

4 Qualified voting schemes

In Section 2, we showed some examples of voting schemes. In this section, we

propose a new family, each of whose members is parametrized by a matrix. Later,

we will relate this family with the aforementioned properties.

Let ! 2 Rk

+

⇥ Rn+1

+

be a weights matrix with k rows and n+ 1 columns. Each row

corresponds to a candidate x 2 K, and each column represents the number of voters

who may be supporting the candidate on the row. A general entry in the weights

matrix ! is denoted by !

x,m

. Matrix ! must satisfy the following two conditions:

(a) !

x,m

< !

x,m+1

8m 2 {1, . . . , n� 1} and 8x 2 K.

(b) !

x,m

6= !

y,m

0 8x, y 2 K and 8m,m

0 2 [1, n+ 1]

Condition (a) implies that the weights on the rows are increasing, and Condition

(b) requires that all of the entries must be di↵erent from each other. We denote by

⌦ the collection of all such weights matrices.

Example 4.1. Let N = {1, 2, 3} and K = {x, y, z} be the set of voters and candi-

dates, respectively. One element of ⌦ is

8



0.2 3 4 8
0.3 2 5 9
0.1 1 6 7

0

B@

1

CA

0 1 2 3

x

y

z

! =

The first row corresponds to candidate x, the second row corresponds to candidate

y, and the third row corresponds to candidate z. The first column refers to the case

in which a candidate h 2 K has no support, the second column refers to the case in

which a candidate h 2 K is supported by just one voter, and so on. In this matrix,

the entry !

y,2

equals to 5 and it applies when candidate y gets the support of two

out of three voters. Below, we explain how to use the information in the weights

matrix to construct voting schemes.

Given a weights matrix ! 2 ⌦, we define a qualified voting scheme as follows:

Qualified voting associated with !, Q!. For each v

N

2 V

N ,

Q

!(v
N

) = argmax
x2K

!

x,m

x

(v

N

)+1.

A qualified voting scheme selects the candidate whose corresponding pair candi-

date/support has the highest weight in the matrix !. The next example shows how

qualified voting schemes function:

Example 4.2. Let N = {1, 2, 3} and K = {x, y} be the sets of voters and candi-

dates, respectively. Each candidate can be supported by 0, 1, 2, or 3 voters. Let !

be the following weights matrix:

! =

✓
0 2 3 7

1 4 5 6

◆

• If v

N

2 V

N is such that v

N

= (x, y, x), then the support sets would be

M

x

(v
N

) = {1, 3} and M

y

(v
N

) = {2}, and the cardinalities of these sets are

m

x

(v
N

) = 2 and m

y

(v
N

) = 1. Because !

x,m

x

(v

N

)

= !

x,2

= 3 < 4 = !

y,1

=

!

ym

y

(v

N

)

, we obtain that Q!(v
N

) = y.

• If v

N

2 V

N is such that v

N

= ({x, y}, {x}, {y}), then m

x

(v
N

) = 2 and

m

y

(v
N

) = 2. Because !

x,2

= 3 < 5 = !

y,2

, we obtain that Q!(v
N

) = y.

Di↵erent weights matrices can lead to the same qualified voting scheme. For exam-

ple, let ! 2 ⌦, and let �! 2 ⌦ be the weights matrix all of whose entries have been

multiplied by the scalar � 2 R
++

. Then Q

! = Q

�!.
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A qualified voting mechanism is a pair (V N

, Q

!), where V

N is a profile of sets

of votes and Q

! is a qualified voting scheme. Next, we show that some of the voting

mechanisms in the literature are particular cases of qualified voting mechanisms.

Let us consider the following weights matrix:

0 + 0" 1 + 0" 2 + 0" . . . n + 0"
0 + 1" 1 + 1" 2 + 1" . . . n + 1"
0 + 2" 1 + 2" 2 + 2" . . . n + 2"

...
...

...
. . .

...
0+(k�1)" 1+(k�1)" 2+(k�1)" . . . n+(k�1)"

0

BBBBBB@

1

CCCCCCA

0 1 2 . . . n

x

y

z

...

! =

,

where " <

1

k

. We observe in ! that any entry is larger than all of the entries of

any previous column (for instance, 2 + 1" is larger than each entry of the first two

columns), and therefore, the qualified voting scheme associated with this weights

matrix always chooses the winer among the candidates with the largest support. In

other words, the Q! coincides with the majority voting scheme. We denote by ⌦ the

set of all weights matrices that are like !. As stated in Section 2, the usual approval

voting mechanism is a voting mechanism in which the sets of votes are V
i

= 2K[� for

all i 2 N and the voting scheme is gmaj. Therefore, the approval voting mechanism

is a particular case of the qualified voting mechanisms ((2K [�)N , Q!) when ! 2 ⌦.

Another important advantage of the qualified voting schemes that we present is the

possibility of breaking ties in a more complex way. Traditionally, in the approval

voting mechanism, ties are settled using a priority ordering over the candidates.

This ordering implies that, regardless to which number they tie, this tie is always

broken in favor of the same candidate. Inasmuch as the qualified voting schemes are

more general in this matter, we can break ties di↵erently depending, for example,

on whether the tie is odd or even.

Analogously, it is easy to check that the plurality voting mechanism is also included

in the qualified voting family, where the sets of votes are V

i

= K [ � for all i 2 N

and the voting schemes are Q

! with ! 2 ⌦.

Massó and Vorsatz (2008) introduced what they called the weighted approval voting

rules as generalizations of the approval voting rule. As defined, these rules may select

select more than one candidate. For the sake of comparison with our framework, we

can easily assume that there exists a tie-breaking rule (i.e., an ordering over the set

of candidates K) that results in a single winner. In terms of voting mechanisms, the

set of votes in Massó and Vorsatz (2008) are V
i

= 2K[� for all i 2 N , and the voting

scheme works as follows: each candidate x 2 K has an associated weight ↵
x

2 R
+

(di↵erent weights lead to di↵erent weighted approval voting schemes). For a given

10



voting configuration v

N

2 V

M , the weighted support of candidate x is ↵
x

·m
x

(v
N

).

The candidate with the highest weighted support wins the election (again, a tie-

breaking rule is applied if necessary). The voting mechanisms defined in Massó and

Vorsatz (2008) also belong to the qualified voting family.

However, not every generalization of the approval voting rule can be seen as a qual-

ified voting mechanism. For example, the proposals by Alcalde-Unzu and Vorsatz

(2009) are not in the qualified voting family.

Let us consider the following weights matrix.

!

A

!

C

1,1

. . . !

C

1,n��+1

!

B

...
. . .

...

!

C

k�1,1

. . . !

C

k�1,n��+1

0

BBBBBBBB@

1

CCCCCCCCA

� n0

x

!

0 =

As one can observe, this matrix consists of three blocks. The first block, !A, cor-

responds to the row of candidate x. The second block, !B, contains all of the rows

except for x, and all the columns associated with supports from 0 to �� 1. Finally,

the third block, !C , consists of the rest of the matrix, i.e., all of the rows but x,

and the columns associated with supports from � to n. Subject to the conditions

of being a weights matrix in ⌦, let us assume that (a) any entry of the block !

A is

larger than any other entry of the block !

B, and (b) any entry of the block !

C is

larger than any other entry of the block !

A. For example,

10 11 12 13 14 15
1 4 7 16 21 23
2 5 8 17 20 22
3 6 9 18 19 24

0

BBB@

1

CCCA

3 50
x

!

0 =

By construction, the Q!

0
voting scheme selects x when none of the other candidates

obtain the support of a majority of the voters (3 out of 5). If one or several candidates

pass that threshold, then one of them is elected, depending on the candidate’s

weights and supports. In other words, the Q!

0
voting scheme coincides with the gincx

voting scheme that is presented in Example 2.2. Therefore, given a fixed x 2 K, the

mechanisms (V N

, g

inc

x) are particular cases of the qualified voting mechanisms. Of

course, generalizations can be made by varying the threshold to change the status

quo; in fact, such a threshold could be di↵erent for di↵erent candidates.

11



5 Results

In this section, we present our main results. The first two theorems state that, as long

as the sets of votes V
1

. . . , V

n

are regular, some suitable combinations of properties

characterize either the qualified voting schemes or the majority schemes, depending

on the properties we impose. In addition, we also show that the voting mechanism,

which is understood as the paired sets of votes with their voting schemes, must be

taken as a whole because the assumption about the regularity of the V

i

s plays a

crucial role in these characterizations.

Theorem 5.1. Let (V N

, g) be a voting mechanism such that V

i

is regular for all

i 2 N . Then, g satisfies both candidate anonymity and candidate monotonicity if

and only if g is a qualified voting scheme.

Proof. It is not di�cult to verify that Q! satisfies the properties in the statement

of the theorem. To see the converse, let g be a voting scheme that is not in the

Q family but fulfills the requirements of both candidate anonymity and candidate

monotonicity. First, we use the information on g to obtain a weights matrix !.

Second, we show that Q! coincides with g.

We can define the function G : Rk �! K that provides the elected candidate taking

as input a vector of supports (m
1

, . . . ,m

k

).

G(m
1

, . . . ,m

k

) = x , g(v
N

) = x for some v

N

2 V

Nsuch that m
y

(v
N

) = m

y

8y 2 K

The function G is well defined because g is candidate anonymous, which implies

that G does not depend on the identity of the voters in the sets M
x

(v
N

), but it does

depend on their cardinalities m
x

(v
N

).

Now, we define the weights matrix ! 2 Rk ⇥ Rn+1 as a matrix that solves the

following system of inequalities:

(i) !

x,i

 !

x,(i+1)

8i 2 {1, .., n� 1} and 8x 2 K.

(ii) G(m
1

, . . . ,m

k

) = x if and only if !
x,m

x

> !

y,m

y

8y 2 K � {x}.

To show that the previous system has a solution, it is enough to prove that the

system does not generate cycles. We proceed by contradiction. Assume that

the system does generate cycles. In that case, we obtain (directly or indirectly)

a situation where !

x,u

< !

y,v

< !

x,u

. Then, according to the definition of the

weights matrix, there must exist two profiles (u, v,m�xy

), (u, v,m0
�xy

) such that

G(u, v,m�xy

) = x, and G(u, v,m0
�xy

) = y. We define a partition of K � {x, y}
into three sets: S = {t 2 K � {x, y} : m

t

> m

0
t

}, S 0 = {t 2 K r {x, y} : m
t

= m

0
t

}
and K � S [ {h, l} = {t 2 K � {x, y} : m

t

< m

0
t

}. We now define the following

12



profile of supports: (u, v,m0
S

,m

S

0
,m�(S[S0[{x,y})). Because the sets of votes V

i

are

regular for all i 2 N , we can ensure the existence of such a profile. By applying

candidate monotonicity from (u, v,m�xy

) to (u, v,m0
S

,m�(S[{x,y})), we demonstrate

that G(u, v,m0
S

,m�(S[{x,y})) = x; by applying the same property from (u, v,m0
�xy

)

to (u, v,m0
S

,m�(S[{x,y})), we demonstrate that G(u, v,m0
S

,m�(S[{x,y})) = y, which

is a contradiction.

Finally, we must still prove that the qualified voting scheme Q

! coincides with the

voting scheme g. However, this is immediately obtained from the way in which we

have defined the weights matrix !. ⇤

Regarding weak neutrality, some qualified voting schemes satisfy this property, but

others do not. The following result states that, if we require weak neutrality in

addition to candidate monotonicity and candidate anonimity, then only the majority

voting schemes meet our criteria.

Theorem 5.2. Let (V N

, g) be a voting mechanism such that V

i

is regular for all

i 2 N . Then, g satisfies candidate anonymity, candidate monotonicity, and weak

neutrality if and only if g is a majority voting scheme.

Proof. Any majority voting scheme clearly satisfies the above three properties. Let

us show the converse. Let g be a voting scheme that fulfills candidate anonymity,

candidate monotonicity, and weak neutrality. We know from Theorem 5.1 that g

must be a qualified voting scheme. Suppose, by contradiction, that g = Q

! where

! /2 ⌦, i.e., that there exist two entries in the weights matrix ! such that !
x,p

< !

y,r

for some x, y 2 K and p, r 2 {1, . . . , n + 1} with p > r, and that there exists a

voting configuration v

N

such that m
x

(v
N

) = p, m
y

(v
N

) = r, and y = g(v
N

).

Because V

N is regular, there exists a voting configuration v

0
N

2 V

N such that

m

x

(v0
N

) = m

y

(v
N

), m
y

(v0
N

) = m

x

(v
N

), and m

z

(v0
N

) = m

z

(v
N

) for all z 2 Kr{x, y}.
Because g is candidate anonymous and weakly neutral, g(v0

N

) = x. Now, let v00
N

2 V

N

be a voting configuration such that m

y

(v00
N

) = m

y

(v
N

), m

x

(v00
N

) = m

x

(v
N

), and

m

z

(v00
N

) = 0 8z 2 K � {x, y}. We know that such a voting configuration exists

because the sets of votes are regular. Because g is candidate monotonic and candidate

anonymous, when passing from v

N

to v

00
N

, we now that g(v00
N

) = y. Conversely,

through candidate monotonicity and candidate anonymity, it should happen that

g(v00
N

) = x when passing from v

0
N

to v

00
N

, which contradicts the fact that g(v00
N

) = y.

⇤

The following examples show that Theorems 5.1 and 5.2 are tight.

Example 5.1. Let V

N be a profile of sets of votes such that V

i

is regular for

all i 2 N . There is a voting scheme that is candidate anonymous and candidate

monotonic, but not weakly neutral: Q!, where ! 2 ⌦� ⌦.

13



Example 5.2. Let V N be a regular profile of sets of votes such that V
i

= K [� for

all i 2 N . A voting scheme that is weakly neutral and candidate monotonic, but

not candidate anonymous is defined as follows. Fix x 2 K, and let 1 � 2 � . . . � n

be an ordering on voters. Then, the serial dictator voting scheme associated with x

and � is defined as follows. For all v
N

2 V

N

g

x

�(vN) =

⇢
v

j

if v
j

6= � and v

i

= � for all i � j

x if v
i

= � for all i 2 N

Example 5.3. Let V

N be a profile of sets of votes such that V

i

= K [ � for all

i 2 N . Let ! 2 ⌦. A voting scheme that is candidate anonymous and weakly

neutral but not candidate monotonic is as follows. For all v
N

2 V

N

g

!(v
N

) = argmin
x2K

!

x,m

x

(v

N

)

.

Now, we examine to what extent the assumption about the regularity of the sets of

votes is a determinant of the two previous results. We present two voting mechanisms

in which the sets of votes are not regular and the voting scheme is not a qualified

voting scheme (though it is candidate monotonic, candidate anonymous, and weakly

neutral).

Example 5.4. Let us assume that N = {1, 2, 3} and K =

{x, y, z, w, h, l, t}. Let us consider a voting mechanism (V N

, g) where

V

i

= {{x, l}, {y, w}, {y, z}, {h, t}, {x}, {y}, {z}, {w}, {h}, {l}, {t},�} for all i 2 N .

Let the voting scheme g be as follows. For all v
N

2 V

N

g(v
N

) =

⇢
h if m

h

(v
N

) > m

t

(v
N

) or (m
h

(v
N

) = m

t

(v
N

) and m

w

(v
N

) 6= 0)

t if m
h

(v
N

) < m

t

(v
N

) or (m
h

(v
N

) = m

t

(v
N

) and m

w

(v
N

) = 0)

The set V
i

is not regular because i is not allowed to vote for any combination of two

candidates. For instance, she may vote for {y, w}, but not for {x, y}, i.e., V 2\V
i

6= �

but V 2 * V

i

, which is a condition for regularity. The voting scheme g is candidate

monotonic, candidate anonymous, and weakly neutral. Nevertheless, it does not

belong to the qualified voting family. Indeed, let v

N

= ({x, l}, {h, t}, {y, w}) and

v

0
N

= ({x, l}, {h, t}, {y, z}). Note that g(v
N

) = h and g(v0
N

) = t but M

h

(v
N

) =

{2} = M

h

(v0
N

) and M

t

(v
N

) = {2} = M

t

(v0
N

). Therefore, g cannot be written as a

qualified voting scheme.

In reality, there are some electoral processes in which voters may abstain and others

in which they are obliged to vote. The election of the President of the United States

is of the first type, and the election in Belgium and some South American countries

are of the second type. This is closely related to the structure of the sets of votes. By

imposing regularity, we are also assuming that � 2 V . This assumption implies that

voters, independently of how rich V may be, cannot abstain. The example below

considers a profile of sets of votes where the regularity condition is only violated in

this respect.
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Example 5.5. Let � be an ordering over the set of candidates K, and let a =

(a
i

)n�1

i=1

. Let (V N

, g

W ) be the voting mechanism in which V

i

= K for all i 2 N (and

therefore � /2 V

i

). The family of generalized median voting schemes can be described

using a list of parameters a = (a
i

)n�1

i=1

asW a(v
N

) = med{v
1

, v

2

, ..., v

n

; a
1

, a

2

, .., a

n�1

}.
We now show that any W

a satisfies candidate anonymity and candidate mono-

tonicity (but clearly not weak neutrality). It is clear that W

a satisfies candidate

anonymity. To show that W

a satisfies candidate monotonicity, it is enough to see

that the property only applies when one goes from v

N

to v

0
N

, wherein the chosen

candidate, W a(v
N

), strictly increases her support at v0
N

while other candidates de-

crease their support, but in such a case W

a(v0
N

) = W

a(v
N

). However, whenever

#K > 3, the generalized median voting schemes cannot be described as qualified

voting schemes.

From Theorems 5.1 and 5.2 and the examples above, we conclude that there is a

trade-o↵ between the properties we impose on the voting scheme and the flexibility

(measured through regularity) voters have to vote. Our last results show that by

strengthening one of the requirements of the voting scheme, we can eliminate the

regularity condition. More precisely, if we substitute candidate monotonicity with

strong candidate monotonicity, we obtain characterizations that are analogous to

Theorems 5.1 and 5.2 without imposing any particular structure on the sets of

votes.

Theorem 5.3. Let (V N

, g) be a voting mechanism. Then, g satisfies candidate

anonymity and strong candidate monotonicity if and only if g is a qualified voting

scheme.

Proof. Clearly, any qualified voting scheme satisfies the two desired properties.

We argue the converse. Let g be a voting scheme that fulfills candidate anonymity

and strong candidate monotonicity. From here, the argument is quite similar to the

reasoning of the proof of Theorem 5.1. First, we define a weights matrix !, and

then, we show that Q! = g.

Let G : Rk �! K be a mapping that provides the elected candidate taking as input

a vector of supports (m
1

, . . . ,m

k

).

G(m
1

, . . . ,m

k

) = x , g(v
N

) = x for some v

N

2 V

Nsuch that m
y

(v
N

) = m

y

8y 2 K

Because g is candidate anonymous, G is well-defined. Now, let ! 2 Rk ⇥ Rn+1 be a

matrix that solves the following system of inequalities:

(i) !

x,i

 !

x,(i+1)

8i 2 {1, . . . , n� 1} and 8x 2 K.

(ii) G(m
1

, . . . ,m

k

) = x if and only if !
x,m

x

> !

y,m

y

8y 2 K � {x}.
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We show that the previous conditions do not generate cycles. Assume otherwise,

we obtain (directly or indirectly) a situation where !

x,u

< !

y,v

< !

x,u

. Then, there

exist two profiles m = (u, v,m�xy

) and m

0 = (u, v,m0
�xy

) such that G(m) = x and

G(m0) = y. By strong candidate monotonicity and candidate monotonicity, it must

hold that G(m0) 2 S(m,m

0) [ G(m), where S(m,m

0) = {z 2 A

g

: m

z

< m

0
z

}.
Inasmuch as y /2 S(m,m

0), we obtain the desired contradiction. ⇤

Theorem 5.4. Let (V N

, g) be a voting mechanism. Then, g satisfies candidate

anonymity, strong candidate monotonicity and weak neutrality if and only if g is a

majority voting scheme.

Proof. Because it is clear that any majority voting scheme fulfills the above three

requirements, we focus on the converse. Let g be a voting scheme that is candidate

anonymous, candidate monotonicity, and weakly neutral. We know from Theorem

5.1 that g must be a qualified voting scheme. Suppose, by contradiction, that g = Q

!

where ! /2 ⌦, that is, suppose that there exist two entries in the weights matrix !

such that !
x,p

< !

y,r

for some x, y 2 K and p, r 2 {1, . . . , n+ 1} with p > r. Then,

there exists a voting configuration v

N

such that m

x

(v
N

) = p, m
y

(v
N

) = r, and

y = g(v
N

). ⇤

6 Conclusions

In this paper, we study voting mechanisms, which consist of two elements: a pro-

file of sets of votes (that describes the possible votes that voters can cast) and a

voting scheme (that states how to aggregate those votes). We have introduced the

qualified voting mechanisms using qualified voting schemes. These voting schemes

have an easy and natural functioning. In essence, they select the candidate whose

corresponding support has the highest priority, which is determined using a weights

matrix. The qualified voting schemes satisfy candidate monotonicity, strong candi-

date monotonicity, and candidate anonymity. However, Theorem 5.1 has now shown

that, when the sets of votes are regular, those are the only voting schemes that are

candidate monotonic and candidate anonymous. If, in addition, we impose weak

neutrality, then we can only utilize majority voting schemes.

The model in May (1952), where K = {x, y} can be adapted to our framework.

Each voter i submits her preferences regarding the candidates: x is preferred to y, y

is preferred to x, or x is indi↵erent to y. This is equivalent to the assumption that

the sets of votes are V
i

= {{x}, {y}, {x, y}} for all i 2 N . The voting scheme selects

one winner.4 The sets V

i

are not regular. However, when the set of candidates

4Actually, in May (1952) the voting scheme could select both candidates. In such a case we
assume that there is a tie-breaking rule.
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only consists of two elements, both candidate monotonicity and strong candidate

monotonicity coincide. Because of this coincidence, the characterization in May

(1952) could be understood as a consequence of Theorem 5.4.

There are two interesting extensions that, although beyond the goals of this paper,

are worth mentioning. We have focused on voting situations in which we need to

choose a single winner. Although this situation is quite common, there are other

scenarios where more candidates have to be selected (e.g., elections in multi-member

districts). The properties we consider are easy to extend to this new framework, but

the characterization we obtain cannot be directly applied to it. We have to decide

whether the goal is to elect a fixed number of candidates (no more and no less) or

a maximum number (e.g., three candidates at most). Depending on which goal we

set, the nature of the results we obtain may vary significantly.

Another promising extension is adding a third element to the problem: preferences.

So far, the voting situation is described by the sets of votes (or messages) and

the voting scheme (or outcome function). By introducing preferences, voters are

able to compare the results of the election, which opens the door to studying the

manipulability of the qualified voting schemes or their potential extensions to a

multi-winner framework.
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